Peer-reviewed publications

  1. Atmospheric loss in giant impacts depends on pre-impact surface conditions.
    Lock, S. J. and S. T. Stewart. The Planetary Science Journal . 5, 28, doi: 10.3847/PSJ/ad0b16, 2024 ArXiv preprint

  2. A planetary collision afterglow and transit of the resultant debris cloud.
    Kenworthy*, M., S. J. Lock* , G. Kennedy*, R. van Capelleveen*, E. Mamajek*, L. Carone*, F.-J. Hambsch, J. Masiero, A. Mainzer, J. D. Kirkpatrick, E. Gomez, Z. M. Leinhardt, J. Dou, P. Tanna , A. Sainio, H. Barker, S. Charbonnel, O. Garde, P. Le Du, L. Mulato, T. Petit, and M. R. Smith. Nature 622, 251–254, doi: 10.1038/s41586-023-06573-9251–254, 2023. ArXiv preprint. *These authors contributed equally to this work.

  3. Origin of the Moon.
    Canup, R. M., K. Righter, N. Dauphas, K. Pahlevan, M. Ćuk, S. J. Lock, S. T. Stewart, J. Salmon, R. Rufu, M. Nakajima, and T. Magna. Reviews in Mineralogy and Geochemistry 89 (1), 53102, doi: 10.2138/rmg.2023.89.02, 2023. Part of the New views of the Moon II volume. ArXiv preprint

  4. The lithophile element budget of Earth's core.
    Chidester*, B. A., S. J. Lock*, K. E. Swadba, Z. Rahman, K. Righter and A. J. Campbell. Geochemisty, Geophysics, Geosystems 23, e2021GC009986, doi: 10.1029/2021GC009986, 2022. *B. A. Chidester and S. J. Lock are co-first authors.

  5. Long-term Earth-Moon evolution with high-level orbit and ocean tide models
    Daher H., B. K. Arbic, J. G. Williams, J. K. Ansong, D. H. Boggs, M. Müller, M. Schindelegger, J. Austermann, B. D. Cornuelle, E. B. Crawford, O. B. Fringer, H. C. P. Lau, S. J. Lock, A. C. Maloof, D. Menemenlis, J. X. Mitrovica, J. A. M. Green and M. Huber. JGR: Planets 126, e2021JE006875, doi: 10.1029/2021je006875, 2021.

  6. Tidal evolution of the Earth-Moon system with a high initial obliquity
    Ćuk, M., S. J. Lock, S. T. Stewart and D. Hamilton. The Planetary Science Journal 2, 147, doi: 10.3847/PSJ/ac12d1, 2021. ArXiv preprint

  7. The shock physics of giant impacts: Key requirements for the equations of state.
    Stewart, S. T., E. J. Davies, M. S. Duncan, S. J. Lock, S. Root, J. P. Townsend, R. G. Kraus, R. Caracas and S. B. Jacobsen. AIP Conference Proceedings 2272, 080003, doi: 10.1063/12.0000946, 2020. ArXiv preprint

  8. Clustering-informed cinematic astrophysical data visualization with application to the Moon-forming terrestrial synestia.
    Aleo, P. D., S. J. Lock, D. J. Cox, S. A. Levy, J. P. Naiman, A. J. Christensen, K. Borkiewicz, and R. Patterson. Astronomy and Computing 33, 100424, doi: 10.1016/j.ascom.2020.100424, 2020. ArXiv preprint

  9. Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities
    Lock, S. J., K. R. Bermingham, R. Parai, and M. Boyet. Space Science Reviews 216, 109, doi: 10.1007/s11214-020-00729-z, 2020. Preprint

  10. The energy budgets of giant impacts.
    Carter, P. J., S. J. Lock and S. T. Stewart. JGR: Planets 125, e2019JE006042, doi: 10.1029/2019JE006042, 2020. ArXiv preprint

  11. The energy budget and figure of Earth during recovery from the Moon-forming giant impact.
    Lock, S. J., S. T. Stewart and M. Ćuk. EPSL 530, pp 115885, doi: 10.1016/J.EPSL.2019.115885, 2020. ArXiv preprint

  12. Giant impacts stochastically change the internal pressures of terrestrial planets.
    Lock, S. J. and S. T. Stewart. Science Advances 5, eaav3746, doi: 10.1126/sciadv.aav3746, 2019. ArXiv preprint

  13. The origin of the Moon within a terrestrial synestia
    Lock, S. J., S. T. Stewart, M. I. Petaev, Z. M. Leinhardt, M. T. Mace, S. B. Jacobsen and M. Ćuk. JGR: Planets 123, pp 910-951, doi:10.1002/2017JE005333, 2018. ArXiv preprint

  14. The structure of terrestrial bodies: Impact heating, corotation limits and synestias
    Lock, S. J. and S. T. Stewart. JGR: Planets 122, pp 950-982, doi:10.1002/2016JE005239, 2017. ArXiv preprint

  15. Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth
    Ćuk, M., D. Hamilton, Lock, S. J. and S. T. Stewart. Nature 539, pp402-406, doi:10.1038/nature19846, 2016.

In progress

Student advisees underlined.

  1. A tectonically active early Earth driven by the tidal recession of the Moon
    Lock, S. J. Submitted.

  2. Can we detect moon-forming impacts in other star systems?
    Tanna, P., S. J. Lock, S. T. Hodgkin, and A. Bonsor. In prep.

  3. An automated method for identification of synestias.
    Kleine, I. and S. J. Lock. In prep.

  4. The formation of chondrites by vaporizing collisions between planetesimals.
    Stewart, S. T., P. J. Carter, S. J. Lock, E. J. Davies, R. G. Kraus, S. Root, M. I. Petaev and S. B. Jacobsen. In prep.

Other publications

  1. HERCULESv1_user: HERCULES planetary structure code (Version v1.0.0).
    Lock, S. J. Zenodo, http://doi.org/10.5281/zenodo.3509365, 2019.

  2. Equation of State Model Forsterite-ANEOS-SLVTv1.0G1: Documentation and Comparisons (Version v1.0.0).
    Stewart, S. T., E. J. Davies, M. S. Duncan, Megan, S. J. Lock, S. Root, J. P. Townsend, and S. B. Jacobsen. Zenodo, http://doi.org/10.5281/zenodo.3478631, 2019.

  3. Origin Story.
    Lock, S. J., and S. T. Stewart. Scientific American, CCCXX, 7, 2019.

  4. Making the Moon: The legacy of Apollo.
    Lock, S. J. The Geographer, Summer, 2019.

  5. A new theory of how the Moon formed.
    Lock, S. J. Scientific American, 2017.